M-functions and Inverse Spectral Analysis for Finite and Semi-infinite Jacobi Matrices
نویسندگان
چکیده
We study inverse spectral analysis for finite and semi-infinite Jacobi matrices H. Our results include a new proof of the central result of the inverse theory (that the spectral measure determines H). We prove an extension of Hochstadt’s theorem (who proved the result in the case n = N) that n eigenvalues of an N ×N Jacobi matrix, H, can replace the first n matrix elements in determining H uniquely. We completely solve the inverse problem for (δn, (H − z)−1δn) in the N < ∞ case. §
منابع مشابه
Comparative study on solving fractional differential equations via shifted Jacobi collocation method
In this paper, operational matrices of Riemann-Liouville fractional integration and Caputo fractional differentiation for shifted Jacobi polynomials are considered. Using the given initial conditions, we transform the fractional differential equation (FDE) into a modified fractional differential equation with zero initial conditions. Next, all the existing functions in modified differential equ...
متن کاملThe Two-Spectra Inverse Problem for Semi-Infinite Jacobi Matrices in The Limit-Circle Case∗†‡
We present a technique for reconstructing a semi-infinite Jacobi operator in the limit circle case from the spectra of two different self-adjoint extensions. Moreover, we give necessary and sufficient conditions for two real sequences to be the spectra of two different self-adjoint extensions of a Jacobi operator in the limit circle case. ∗Mathematics Subject Classification(2000): 47B36, 49N45,...
متن کاملThe Two - Spectra Inverse Problem for Semi - Infinite Jacobi Matrices in The Limit - Circle Case ∗ † ‡ Luis
We present a technique for reconstructing a semi-infinite Jacobi operator in the limit circle case from the spectra of two different self-adjoint extensions. Moreover, we give necessary and sufficient conditions for two real sequences to be the spectra of two different self-adjoint extensions of a Jacobi operator in the limit circle case. Mathematics Subject Classification(2000): 47B36, 49N45, ...
متن کاملInverse Spectral Problems for Tridiagonal N by N Complex Hamiltonians ⋆
In this paper, the concept of generalized spectral function is introduced for finite-order tridiagonal symmetric matrices (Jacobi matrices) with complex entries. The structure of the generalized spectral function is described in terms of spectral data consisting of the eigenvalues and normalizing numbers of the matrix. The inverse problems from generalized spectral function as well as from spec...
متن کاملIntegration of the Finite Toda Lattice with Complex-Valued Initial Data
We show that the finite Toda lattice with complex-valued initial data can be integrated by the inverse spectral method. For this goal spectral data for complex Jacobi matrices are introduced and an inverse spectral problem from the spectral data is solved. The time evolution of the spectral data for the Jacobi matrix associated with the solution of the Toda lattice is computed. Using the soluti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1996